Признаки сходимости знакопеременных рядов. Знакопеременные ряды, абсолютная и условная сходимость

Ряд называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные.

Рассмотренные в предыдущем параграфе знакочередующиеся ряды являются, очевидно, частным случаем знакопеременных рядов.

Мы рассмотрим здесь некоторые свойства знакопеременных рядов. При этом в отличие от соглашения, принятого в предыдущем параграфе, мы будем теперь полагать, что числа могут быть как положительными, так и отрицательными.

Прежде всего, дадим один важный достаточный признак сходимости зракопеременного ряда.

Теорема 1. Если знакопеременный ряд

таков, что ряд, составленный из абсолютных величин его членов,

сходится, то и данный знакопеременный ряд также сходится.

Доказательство. Пусть - суммы первых членов рядов (1) и (2).

По условию, имеет предел и - положительные возрастающие величины, меньшие а. Следовательно, они имеют пределы Из соотношения следует, что и имеет предел и этот предел равен , т. е. знакопеременный ряд (1) сходится.

Доказанная теорема дает возможность судить о сходимости некоторых знакопеременных рядов. Исследование вопроса о сходимости знакопеременного ряда сводится в этом случае к исследованию ряда с положительными членами.

Рассмотрим два примера.

Пример 1. Исследовать сходимость ряда

где а - любое число.

Решение. Наряду с данным рядом, рассмотрим ряды

Ряд (5) сходится (см. § 6). Члены ряда (4) не больше соответственных членов ряда (5); следовательно, ряд (4) тоже сходится. Но тогда в силу доказанной теоремы данный знакопеременный ряд (3) тоже сходится.

Пример 2. Исследовать сходимость ряда

Решение. Наряду с данным рядом, рассмотрим ряд

Этот ряд сходится, так как он является убывающей геометрической прогрессией со знаменателем 1/3. Но тогда сходится и заданный ряд (6), так как абсолютные величины его членов меньше соответствующих членов ряда (7).

Заметим, что признак сходимости, доказанной выше, является только достаточным признаком сходимости знакочередующегося ряда, но не необходимым: существуют такие знакопеременные ряды, которые сами сходятся, но ряды, составленные из абсолютных величин их членов, расходятся. В связи с этим полезно ввести понятия об абсолютной и условной сходимости. знакопеременного ряда и на основе этих понятий классифицировать знакопеременные ряды.

Определение. Знакопеременный ряд

называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов:

Если же знакопеременный ряд (1) сходится, а ряд (2), составленный из абсолютных величин его членов, расходится, то данный знакопеременный ряд (1) называется условно или неабсолютно сходящимся рядом.

Пример 3. Знакопеременный ряд является условно сходящимся, так как ряд, составленный из абсолютных величин его членов, есть гармонический ряд который расходится. Сам же ряд сходится, что легко проверить с помощью признака Лейбница.

Пример 4. Знакопеременный ряд есть ряд абсолютно сходящийся, так как ряд, составленный из абсолютных величин его членов сходится, как это было установлено в § 4.

С помощью понятия абсолютной сходимости теорему 1 часто формулируют следующим образом: всякий абсолютно сходящийся ряд есть ряд сходящийся.

В заключение отметим (без доказательства) следующие свойства абсолютно сходящихся и условно сходящихся рядов.

Теорема 2. Если ряд сходится абсолютно, то он остается абсолютно сходящимся при любой перестановке его членов. При этом сумма ряда не зависит от порядка его членов.

Это свойство не сохраняется для условно сходящихся рядов. Теорема 3. Если ряд сходится условно, то, какое бы мы ни задали число А, можно так переставить члены этого ряда, чтобы его сумма оказалась в точности равной А. Более того, - можно так переставить члены условно сходящегося ряда, чтобы ряд, полученный после перестановки, оказался расходящимся.

Доказательство эти теорем выходит за рамки данного курса. Его можно найти в более подробных учебниках (см., например, Фнхтенгольц Г. М. Курс дифференциального и интегрального исчисления, т. II. - М.: Физматгиз, 1962, с. 319-320).

Знакопеременными называются ряды, члены которых могут иметь любые знаки, например, .

В частности, если положительные и отрицательные члены ряда следуют друг за другом поочередно, то такой знакопеременный ряд называется знакочередующимся.

Знакочередующие ряды

Знакочередующий ряд, члены которого являются положительными, можно представить в виде

Для исследования сходимости знакочередующихся рядов применяют признак Лейбница.

Признак Лейбница. Знакочередующийся ряд сходится, если абсолютные величины его членов убывают, а общий член стремится к нулю, т. е. если выполняются следующие два условия:

1)
и 2)
.

Достаточно важный класс сходящихся рядов образуют так называемые абсолютно сходящиеся ряды. При этом членами таких рядов могут быть любые действительные числа.

Определение 9.5. Рядназывается абсолютно сходящимся, если сходится
.

Теорема 9.4. Если ряд
сходится, то и рядтоже сходится.

Данная теорема утверждает, что если ряд абсолютно сходится, то он и просто сходится.

Необходимо отметить, что:

1) для знакопостоянных рядов понятие сходимости и абсолютной сходимости совпадают;

2) ряд называется условно сходящимся, если он сходится, а ряд
расходится.

Рассмотрим признаки Даламбера и Коши для произвольных знакопеременных рядов.

Признак Даламбера. Если существует
, то при
рядабсолютно сходится, при
ряд будет расходящимся, при
признак не решает вопроса о сходимости ряда.

Задача 9.7. Исследовать сходимость ряда

Здесь за каждыми двумя положительными членами ряда следует два отрицательных. Для исследования сходимости такого ряда воспользуемся признаком Даламбера.

.

Исходный ряд сходится по признаку Даламбера.

Задача 9.8. Исследовать ряд на абсолютную сходимость

Здесь
. Для такого ряда выполняются следующие условия:

а)

б)
. Следовательно, исходный ряд сходится в соответствии с признаком Лейбница.

Исследуем заданный ряд на абсолютную сходимость. Для этого составим ряд
из абсолютных величин:

Такой ряд представляет собой бесконечно убывающую геометрическую прогрессию, которая всегда сходится. Таким образом, исходный ряд сходится абсолютно.

Задача 9.9 . Исследовать сходимость ряда

Здесь
, следовательно ряд расходящийся, так как не выполняется необходимое условие сходимости.

Тема 9.2. Функциональные ряды

Пусть задана следующая последовательность функций
, т. е.

которая определена на некотором множестве. Если члены такой последовательности соединить знаком плюс, то получают выражение

или
. Такие выражения называют функциональными рядами, а функция
называется общим членом ряда.

Частными суммами ряда
называются функции вида

Функциональный ряд
называется сходящимся при
или в точке (), если в этой точке сходится последовательность его частных сумм:

Другими словами, можно отметить, что функциональный ряд
сходится при
, если сходится числовой ряд
.

Предел последовательности
, обозначим его через
, называется суммой ряда
в точке.

Определение 9.6. Совокупность всех значений, для которых сходится ряд
, называется областью сходимости этого ряда.

Пусть
на отрезке тогда
на рассматриваемом отрезке. В этом случае отмечают, что функция
разлагается в ряд на отрезке
.

Как было показано, сходимость функционального ряда на отрезке
означает, что для любого значенияотрезка
соответствующий числовой ряд сходится. В этой связи для исследования на сходимость функциональных рядов можно использовать признаки сходимости числовых рядов.

Задача 9.10. Найти область сходимости ряда

Компактно этот ряд можно представить следующим образом

.

Этот ряд сходится для всех
. Действительно, для каждого
сумма ряда равна(сумма бесконечно убывающей геометрической прогрессии). Таким образом, в интервале
исходный ряд определяет функцию

Числовой ряд

называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные числа.

Числовой ряд называется знакочередующимся, если любые два стоящие рядом члена имеют противоположные знаки.

где для всех (т.е. ряд, положительные и отрицательные члены которого следуют друг за другом поочередно). Например,

Для знакочередующихся рядов имеет место достаточный признак сходимости (установленный в 1714г. Лейбницем в письме к И.Бернулли).

Признак Лейбница. Абсолютная и условная сходимость ряда

Теорема (Признак Лейбница).

Знакочередующийся ряд сходится, если:

Последовательность абсолютных величин членов ряда монотонно убывает, т.е. ;

Общий член ряда стремится к нулю:.

При этом сумма S ряда удовлетворяет неравенствам

Замечания.

Исследование знакочередующегося ряда вида

(с отрицательным первым членом) сводится путем умножения всех его членов на к исследованию ряда.

Ряды, для которых выполняются условия теоремы Лейбница, называются лейбницевскими (или рядами Лейбница).

Соотношение позволяет получить простую и удобную оценку ошибки, которую мы допускаем, заменяя сумму S данного ряда его частичной суммой.

Отброшенный ряд (остаток) представляет собой также знакочередующийся ряд, сумма которого по модулю меньше первого члена этого ряда, т.е.. Поэтому ошибка меньше модуля первого из отброшенных членов.

Пример. Вычислить приблизительно сумму ряда.

Решение: данный ряд Лейбницевского типа. Он сходится. Можно записать:

Взяв пять членов, т.е. заменивна

Сделаем ошибку, меньшую,

чем. Итак,.

Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.

Теорема. Пусть дан знакопеременный ряд

Если сходится ряд

составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд.

Признак сходимости Лейбница для знакочередующихся рядов служит достаточным признаком сходимости знакочередующихся рядов.

Знакопеременный ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов, т.е. всякий абсолютно сходящийся ряд является сходящимся.

Если знакопеременный ряд сходится, а составленный из абсолютных величин его членов ряд расходится, то данный ряд называется условно (неабсолютно) сходящимся.

Упражнения

Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:

Следовательно, согласно признаку Лейбница, ряд сходится. Выясним, сходится ли этот ряд абсолютно или условно.

Ряд, составленный из абсолютных величин данного ряда, является гармоническим рядом, который, расходится. Поэтому данный ряд сходится условно.

Члены данного ряда по абсолютной величине монотонно убывают:


Ряд расходится, так как признак Лейбница не выполняется.

Используя признак Лейбница, получим

т.е. ряд сходится.

Это геометрический ряд вида, где, который сходится. Поэтому данный ряд сходится абсолютно.

Используя признак Лейбница, имеем

т.е. ряд сходится.

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:

Это обобщенный гармонический ряд, который расходится, так как. Следовательно, данный ряд сходится условно.

знакопеременный ряд сходимость слагаемое

Определение

Ряд называется знакопеременным , если он содержит как положительные, так и отрицательные члены.

Пример 16. Ряды

,
,

являются знакопеременными.

Знакочередующиеся ряды, очевидно, являются частным случаем знакопеременных рядов.

Для знакопеременного ряда возникает вопрос о связи его сходимости со сходимостью знакоположительного ряда .

ТЕОРЕМА 9 (Признак абсолютной сходимости)

Если сходится ряд , то сходится и ряд .

Доказательство. Из сходимости ряда по свойству 3 сходящихся рядов следует сходимость ряда
. Действительно, поскольку
, где
, то по первому признаку сравнения сходится и ряд
.

Отсюда следует, что ряд
также сходится, так как является алгебраической суммой двух сходящихся рядов.

В доказанной теореме сформулирован достаточный признак сходимости ряда . Обратное утверждение в общем случае неверно.

Определения

Если сходится ряд , то ряд называется абсолютно сходящимся.

Если же ряд сходится, а ряд расходится, то ряд называется условно сходящимся .

Пример 17.
.

Общий член этого ряда
. Так как
, то ряд
расходится, ибо он является рядом Дирихле, в котором
. Ряд
согласно признаку Лейбница сходится. Следовательно, исследуемый ряд сходится условно.

Пример 18. Исследовать на сходимость ряд
.

Этот ряд сходится абсолютно, так как ряд
– сходящийся ряд Дирихле.

При исследовании знакочередующихся рядов на сходимость можно рассуждать по следующей схеме:

Ранее отмечалось, что в знакоположительных рядах можно произвольным образом переставлять и группировать члены. В знакопеременных рядах, если они абсолютно сходятся, это свойство сохраняется. Для условно сходящихся рядов дело обстоит иначе. Здесь группировка, перестановка членов ряда может нарушить сходимость ряда. Например, если из знакочередующегося условно сходящегося ряда выделить положительные члены, то полученный ряд может расходиться. Следует иметь в виду это обстоятельство и с условно сходящимися рядами обращаться с большой осторожностью. Для условно сходящихся рядов справедлива следующая теорема Римана.

ТЕОРЕМА 10

Изменяя порядок членов в условно сходящемся ряде, можно сделать его сумму равной любому наперед заданному числу и даже сделать ряд расходящимся.

К примеру, если в ряде
провести перестановку членов, то ряд можно представить в виде

Итак, сумма рассматриваемого ряда уменьшилась вдвое. Это происходит потому, что при условной сходимости осуществляется взаимное погашение положительных и отрицательных членов и, следовательно, сумма ряда зависит от порядка расположения членов, а при абсолютной сходимости ряда этого не происходило.

Пример 19. Исследовать на сходимость ряд
.

Данный ряд знакочередующийся. Исследуем ряд, составленный из модулей его членов, т.е. ряд
. Используя признак Коши, получаем

Следовательно, данный ряд сходится абсолютно.

Функциональные ряды Функциональный ряд и его область сходимости

Пусть
,
,...,
,... – последовательность функций, определенных на некотором множестве
.

Определение

Ряд вида

, (14)

членами которого являются функции, называется функциональным .

Придавая в (14) различные числовые значения из множества
, будем получать различные числовые ряды. В частности, при
из (14) получим числовой ряд
. Этот числовой ряд может быть сходящимся или расходящимся. Если он сходится, тоназываетсяточкой сходимости функционального ряда (14) .

Множество всех точек сходимости функционального ряда называют его областью сходимости и обозначают ее через
. Очевидно,
. В частных случаях множество
может совпадать или не совпадать с множеством
или же может быть и пустым множеством. В последнем случае функциональный ряд расходится в каждой точке множества
.

Вид области
для произвольного функционального ряда может быть различным: вся числовая ось, интервал, объединение интервалов и полуинтервалов и т.д. В простейших случаях при исследовании функциональных рядов на сходимость можно применить рассмотренные выше признаки сходимости числовых рядов, если подx понимать фиксированное число.

Определения

Сумма первых членов функционального ряда

называется
ой частичной суммой , а функция
, определенная в области

,– суммой функционального ряда .

Функция , определенная в области
, называется остатком ряда .

Функциональный ряд называется абсолютно сходящимся на множестве
, если в каждой точке
сходится ряд
.

Определение 1

Числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом.

Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд $1-\frac{1}{2} -\frac{1}{3} +\frac{1}{4} +\frac{1}{5} -\frac{1}{6} -\frac{1}{7} +\ldots - $ знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (-) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 2

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится и его сумма равна S,а частичная сумма равна $S_n$ , то $r_{n} =S-S_{n} $ называется остатком ряда, причём $\mathop{\lim }\limits_{n\to \infty } r_{n} =\mathop{\lim }\limits_{n\to \infty } (S-S_{n})=S-S=0$, т.е. остаток сходящегося ряда стремится к 0.

Определение 3

Ряд $\sum \limits _{n=1}^{\infty }u_{n} $ называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Определение 4

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, а ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 1 (достаточный признак сходимости знакопеременных рядов)

Знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов$\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Замечание

Теорема 1 даёт только достаточное условие сходимости знакопеременных рядов . Обратная теорема неверна, т.е. если знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, то не обязательно, что сходится ряд, составленный из модулей $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $ (он может быть как сходящимся, так и расходящимся). Например, ряд $1-\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +...=\sum \limits _{n=1}^{\infty }\frac{(-1)^{n-1} }{n} $ сходится по признаку Лейбница, а ряд, составленный из абсолютных величин его членов, $\sum \limits _{n=1}^{\infty }\, \frac{1}{n} $ (гармонический ряд) расходится.

Свойство 1

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если $S"$ - сумма всех его положительных членов, а $S""$ - сумма всех абсолютных величин отрицательных членов, то сумма ряда $\sum \limits _{n=1}^{\infty }u_{n} $ равна $S=S"-S""$.

Свойство 2

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится и $C={\rm const}$, то ряд $\sum \limits _{n=1}^{\infty }C\cdot u_{n} $ также абсолютно сходится.

Свойство 3

Если ряды $\sum \limits _{n=1}^{\infty }u_{n} $ и $\sum \limits _{n=1}^{\infty }v_{n} $ абсолютно сходятся, то ряды $\sum \limits _{n=1}^{\infty }(u_{n} \pm v_{n}) $ также абсолютно сходятся.

Свойство 4 (теорема Римана)

Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Пример 1

Исследовать на условную и абсолютную сходимость ряд

\[\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} .\]

Решение. Данный ряд является знакопеременным, общий член которого обозначим: $\frac{(-1)^{n} \cdot 9^{n} }{n!} =u_{n} $. Составим ряд из абсолютных величин $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ и применим к нему признак Даламбера. Составим предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } $, где $a_{n} =\frac{9^{n} }{n!} $, $a_{n+1} =\frac{9^{n+1} }{(n+1)!} $. Проведя преобразования, получаем $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n+1} \cdot n!}{(n+1)!\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n} \cdot 9\cdot n!}{n!\cdot (n+1)\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9}{n+1} =0$. Таким образом, ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ сходится, а значит, исходный знакопеременный ряд сходится абсолютно.Ответ: ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} $ абсолютно сходится.

Пример 2

Исследовать на абсолютную и условную сходимость ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $.

  1. Исследуем ряд на абсолютную сходимость. Обозначим $\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} =u_{n} $ и составим ряд из абсолютных величин $a_{n} =\left|u_{n} \right|=\frac{\sqrt{n} }{n+1} $. Получаем ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ с положительными членами, к которому применяем предельный признак сравнения рядов. Для сравнения с рядом $\sum \limits _{n=1}^{\infty }a_{n} =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ рассмотрим ряд, который имеет вид $\sum \limits _{n=1}^{\infty }\, b_{n} =\sum \limits _{n=1}^{\infty }\, \frac{1}{\sqrt{n} } \, $. Этот ряд является рядом Дирихле с показателем $p=\frac{1}{2}
  2. Далее исследуем исходный ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $ на условную сходимость. Для этого проверим выполнение условий признака Лейбница. Условие 1): $u_{n} =(-1)^{n} \cdot a_{n} $, где $a_{n} =\frac{\sqrt{n} }{n+1} >0$, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию $f(x)=\frac{\sqrt{x} }{x+1} $, определенную при $x\in }